Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 309.833
Filter
1.
Chirality ; 36(4): e23664, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38561319

ABSTRACT

Linear dichroism spectroscopy is used to investigate the structure of RecA family recombinase filaments (RecA and Rad51 proteins) with DNA for clarifying the molecular mechanism of DNA strand exchange promoted by these proteins and its activation. The measurements show that the recombinases promote the perpendicular base orientation of single-stranded DNA only in the presence of activators, indicating the importance of base orientation in the reaction. We summarize the results and discuss the role of DNA base orientation.


Subject(s)
DNA , Rad51 Recombinase , Rad51 Recombinase/chemistry , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Stereoisomerism , DNA/chemistry , DNA, Single-Stranded
2.
Sci Rep ; 14(1): 7708, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38565932

ABSTRACT

Human RECQL4, a member of the RecQ helicase family, plays a role in maintaining genomic stability, but its precise function remains unclear. The N-terminus of RECQL4 has similarity to Sld2, a protein required for the firing of DNA replication origins in budding yeast. Consistent with this sequence similarity, the Xenopus laevis homolog of RECQL4 has been implicated in initiating DNA replication in egg extracts. To determine whether human RECQL4 is required for firing of DNA replication origins, we generated cells in which both RECQL4 alleles were targeted, resulting in either lack of protein expression (knock-out; KO) or expression of a full-length, mutant protein lacking helicase activity (helicase-dead; HD). Interestingly, both the RECQL4 KO and HD cells were viable and exhibited essentially identical origin firing profiles as the parental cells. Analysis of the rate of fork progression revealed increased rates in the RECQL4 KO cells, which might be indicative of decreased origin firing efficiency. Our results are consistent with human RECQL4 having a less critical role in firing of DNA replication origins, than its budding yeast homolog Sld2.


Subject(s)
RecQ Helicases , Replication Origin , Animals , Humans , RecQ Helicases/genetics , RecQ Helicases/metabolism , DNA Replication , Xenopus laevis/metabolism , DNA/metabolism
3.
Genome Med ; 16(1): 52, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566104

ABSTRACT

BACKGROUND: Prostate cancer is a significant health concern, particularly among African American (AA) men who exhibit higher incidence and mortality compared to European American (EA) men. Understanding the molecular mechanisms underlying these disparities is imperative for enhancing clinical management and achieving better outcomes. METHODS: Employing a multi-omics approach, we analyzed prostate cancer in both AA and EA men. Using Illumina methylation arrays and RNA sequencing, we investigated DNA methylation and gene expression in tumor and non-tumor prostate tissues. Additionally, Boolean analysis was utilized to unravel complex networks contributing to racial disparities in prostate cancer. RESULTS: When comparing tumor and adjacent non-tumor prostate tissues, we found that DNA hypermethylated regions are enriched for PRC2/H3K27me3 pathways and EZH2/SUZ12 cofactors. Olfactory/ribosomal pathways and distinct cofactors, including CTCF and KMT2A, were enriched in DNA hypomethylated regions in prostate tumors from AA men. We identified race-specific inverse associations of DNA methylation with expression of several androgen receptor (AR) associated genes, including the GATA family of transcription factors and TRIM63. This suggests that race-specific dysregulation of the AR signaling pathway exists in prostate cancer. To investigate the effect of AR inhibition on race-specific gene expression changes, we generated in-silico patient-specific prostate cancer Boolean networks. Our simulations revealed prolonged AR inhibition causes significant dysregulation of TGF-ß, IDH1, and cell cycle pathways specifically in AA prostate cancer. We further quantified global gene expression changes, which revealed differential expression of genes related to microtubules, immune function, and TMPRSS2-fusion pathways, specifically in prostate tumors of AA men. Enrichment of these pathways significantly correlated with an altered risk of disease progression in a race-specific manner. CONCLUSIONS: Our study reveals unique signaling networks underlying prostate cancer biology in AA and EA men, offering potential insights for clinical management strategies tailored to specific racial groups. Targeting AR and associated pathways could be particularly beneficial in addressing the disparities observed in prostate cancer outcomes in the context of AA and EA men. Further investigation into these identified pathways may lead to the development of personalized therapeutic approaches to improve outcomes for prostate cancer patients across different racial backgrounds.


Subject(s)
Prostatic Neoplasms , Receptors, Androgen , Male , Humans , Receptors, Androgen/genetics , DNA Methylation , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Gene Expression Profiling , DNA/metabolism
4.
BMC Biotechnol ; 24(1): 17, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566117

ABSTRACT

Thermostable DNA polymerases, such as Taq isolated from the thermophilic bacterium Thermus aquaticus, enable one-pot exponential DNA amplification known as polymerase chain reaction (PCR). However, properties other than thermostability - such as fidelity, processivity, and compatibility with modified nucleotides - are important in contemporary molecular biology applications. Here, we describe the engineering and characterization of a fusion between a DNA polymerase identified in the marine archaea Nanoarchaeum equitans and a DNA binding domain from the thermophile Sulfolobus solfataricus. The fusion creates a highly active enzyme, Neq2X7, capable of amplifying long and GC-rich DNA, unaffected by replacing dTTP with dUTP in PCR, and tolerant to various known PCR inhibitors. This makes it an attractive DNA polymerase for use, e.g., with uracil excision (USER) DNA assembly and for contamination-free diagnostics. Using a magnification via nucleotide imbalance fidelity assay, Neq2X7 was estimated to have an error rate lower than 2 ∙ 10-5 bp-1 and an approximately 100x lower fidelity than the parental variant Neq2X, indicating a trade-off between fidelity and processivity - an observation that may be of importance for similarly engineered DNA polymerases. Neq2X7 is easy to produce for routine application in any molecular biology laboratory, and the expression plasmid is made freely available.


Subject(s)
DNA-Directed DNA Polymerase , Uracil , Polymerase Chain Reaction , DNA-Directed DNA Polymerase/genetics , Uracil/metabolism , Plasmids , DNA
5.
Med Arch ; 78(2): 154-158, 2024.
Article in English | MEDLINE | ID: mdl-38566871

ABSTRACT

Background: Familial non-autoimmune hyperthyroidism is a rare disorder characterized by the absence of thyroid autoimmunity, particularly TSH receptor antibody [TRAb]. Objective: The aim of this study was to describe a novel TSHR mutation identified in a family of two siblings and their father. Methods: Two siblings presented for endocrine assessment at ages 7 and 14 years with mild T3 toxicosis, and the father presented at 30 years of age with non-autoimmune thyrotoxicosis. Both siblings were treated with oral antithyroid therapy to achieve reasonable symptom control and thyroid function normalization. The father was treated with oral antithyroid therapy, radioactive iodine, thyroidectomy, and thyroid replacement therapy. Peripheral blood DNA was extracted from both affected siblings and father. Mutation analysis of TSHR was carried out by PCR and Sanger sequencing of both strands of the extracted DNA. Results: Both siblings and their father were heterozygous for the missense TSHR variant c.1855G>C, p.[Asp619His], in exon 10. Conclusions: This novel TSHR variant is associated with T3 toxicosis during childhood. Therefore, early identification and treatment may improve patient outcomes.


Subject(s)
Hyperthyroidism , Thyroid Neoplasms , Humans , DNA , Hyperthyroidism/genetics , Iodine Radioisotopes , Mutation , Receptors, Thyrotropin/genetics
6.
Curr Protoc ; 4(4): e1009, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38572677

ABSTRACT

Expanding the genetic alphabet enhances DNA recombinant technologies by introducing unnatural base pairs (UBPs) beyond the standard A-T and G-C pairs, leading to biomaterials with novel and increased functionalities. Recent developments include UBPs that effectively function as a third base pair in replication, transcription, and/or translation processes. One such UBP, Ds-Px, demonstrates extremely high specificity in replication. Chemically synthesized DNA fragments containing Ds bases are amplified by PCR with the 5'-triphosphates of Ds and Px deoxyribonucleosides (dDsTP and dPxTP). The Ds-Px pair system has applications in enhanced DNA data storage, generation of high-affinity DNA aptamers, and incorporation of functional elements into RNA through transcription. This protocol describes the synthesis of the amidite derivative of Ds (dDs amidite), the triphosphate dDsTP, and the diol-modified dPxTP (Diol-dPxTP) for PCR amplifications involving the Ds-Px pair. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of Ds deoxyribonucleoside (dDs) Basic Protocol 2: Synthesis of dDs amidite Basic Protocol 3: Synthesis of dDs triphosphate (dDsTP) Basic Protocol 4: Synthesis of Pn deoxyribonucleoside (4-iodo-dPn) Basic Protocol 5: Synthesis of acetyl-protected diol-modified Px deoxyribonucleoside (Diol-dPx) Basic Protocol 6: Synthesis of Diol-dPx triphosphate (Diol-dPxTP) Basic Protocol 7: Purification of triphosphates Support Protocol 1: Synthesis of Hoffer's chlorosugar Support Protocol 2: Preparation of 0.5 M pyrophosphate in DMF Support Protocol 3: Preparation of 2 M TEAB buffer.


Subject(s)
Aptamers, Nucleotide , DNA , Polyphosphates , Pyrroles , Polymerase Chain Reaction/methods , Base Pairing , DNA/genetics , DNA/analysis , Pyridines , Aptamers, Nucleotide/genetics
7.
J Chem Phys ; 160(14)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38591677

ABSTRACT

Coarse-grained models have emerged as valuable tools to simulate long DNA molecules while maintaining computational efficiency. These models aim at preserving interactions among coarse-grained variables in a manner that mirrors the underlying atomistic description. We explore here a method for testing coarse-grained vs all-atom models using stiffness matrices in Fourier space (q-stiffnesses), which are particularly suited to probe DNA elasticity at different length scales. We focus on a class of coarse-grained rigid base DNA models known as cgDNA and its most recent version, cgDNA+. Our analysis shows that while cgDNA+ closely follows the q-stiffnesses of the all-atom model, the original cgDNA shows some deviations for twist and bending variables, which are rather strong in the q → 0 (long length scale) limit. The consequence is that while both cgDNA and cgDNA+ give a suitable description of local elastic behavior, the former misses some effects that manifest themselves at longer length scales. In particular, cgDNA performs poorly on twist stiffness, with a value much lower than expected for long DNA molecules. Conversely, the all-atom and cgDNA+ twist are strongly length scale dependent: DNA is torsionally soft at a few base pair distances but becomes more rigid at distances of a few dozen base pairs. Our analysis shows that the bending persistence length in all-atom and cgDNA+ is somewhat overestimated.


Subject(s)
DNA , Elasticity , Base Pairing
8.
Nat Commun ; 15(1): 2857, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565848

ABSTRACT

PARP2 is a DNA-dependent ADP-ribosyl transferase (ARTs) enzyme with Poly(ADP-ribosyl)ation activity that is triggered by DNA breaks. It plays a role in the Base Excision Repair pathway, where it has overlapping functions with PARP1. However, additional roles for PARP2 have emerged in the response of cells to replication stress. In this study, we demonstrate that PARP2 promotes replication stress-induced telomere fragility and prevents telomere loss following chronic induction of oxidative DNA lesions and BLM helicase depletion. Telomere fragility results from the activity of the break-induced replication pathway (BIR). During this process, PARP2 promotes DNA end resection, strand invasion and BIR-dependent mitotic DNA synthesis by orchestrating POLD3 recruitment and activity. Our study has identified a role for PARP2 in the response to replication stress. This finding may lead to the development of therapeutic approaches that target DNA-dependent ART enzymes, particularly in cancer cells with high levels of replication stress.


Subject(s)
DNA Repair , DNA , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , DNA/metabolism , DNA Damage , DNA Helicases/genetics , DNA Helicases/metabolism , Telomere/genetics , Telomere/metabolism
9.
Cell Mol Life Sci ; 81(1): 165, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578457

ABSTRACT

The DNA methylation is gradually acquired during oogenesis, a process sustained by successful follicle development. However, the functional roles of methyl-CpG-binding protein 2 (MeCP2), an epigenetic regulator displaying specifical binding with methylated DNA, remains unknown in oogenesis. In this study, we found MeCP2 protein was highly expressed in primordial and primary follicle, but was almost undetectable in secondary follicles. However, in aged ovary, MeCP2 protein is significantly increased in both oocyte and granulosa cells. Overexpression of MeCP2 in growing oocyte caused transcription dysregulation, DNA hypermethylation, and genome instability, ultimately leading to follicle growth arrest and apoptosis. MeCP2 is targeted by DCAF13, a substrate recognition adaptor of the Cullin 4-RING (CRL4) E3 ligase, and polyubiquitinated for degradation in both cells and oocytes. Dcaf13-null oocyte exhibited an accumulation of MeCP2 protein, and the partial rescue of follicle growth arrest induced by Dcaf13 deletion was observed following MeCP2 knockdown. The RNA-seq results revealed that large amounts of genes were regulated by the DCAF13-MeCP2 axis in growing oocytes. Our study demonstrated that CRL4DCAF13 E3 ubiquitin ligase targets MeCP2 for degradation to ensure normal DNA methylome and transcription in growing oocytes. Moreover, in aged ovarian follicles, deceased DCAF13 and DDB1 protein were observed, indicating a potential novel mechanism that regulates ovary aging.


Subject(s)
Methyl-CpG-Binding Protein 2 , Ubiquitin-Protein Ligases , Female , Humans , Cullin Proteins/genetics , Cullin Proteins/metabolism , DNA/metabolism , DNA Methylation , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Oocytes/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
10.
Mol Biol Rep ; 51(1): 487, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578532

ABSTRACT

The stimulator of the interferon genes (STING) signaling pathway plays a crucial role in innate immunity by detecting cytoplasmic DNA and initiating antiviral host defense mechanisms. The STING cascade is triggered when the enzyme cyclic GMP-AMP synthase (cGAS) binds cytosolic DNA and synthesizes the secondary messenger cGAMP. cGAMP activates the endoplasmic reticulum adaptor STING, leading to the activation of kinases TBK1 and IRF3 that induce interferon production. Secreted interferons establish an antiviral state in infected and adjacent cells. Beyond infections, aberrant DNA in cancer cells can also activate the STING pathway. Preclinical studies have shown that pharmacological STING agonists like cyclic dinucleotides elicit antitumor immunity when administered intratumorally by provoking innate and adaptive immunity. Combining STING agonists with immune checkpoint inhibitors may improve outcomes by overcoming tumor immunosuppression. First-generation STING agonists encountered challenges like poor pharmacokinetics, limited tumor specificity, and systemic toxicity. The development of the next-generation STING-targeted drugs to realize the full potential of engaging this pathway for cancer treatment can be a solution to overcome the current challenges, but further studies are required to determine optimal applications and combination regimens for the clinic. Notably, the controlled activation of STING is needed to preclude adverse effects. This review explores the mechanisms and effects of STING activation, its role in cancer immunotherapy, and current challenges.


Subject(s)
Immunotherapy , Neoplasms , Nucleotidyltransferases , Humans , Antiviral Agents , DNA/genetics , Immunity, Innate , Interferons , Neoplasms/therapy , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism
11.
Int J Hyperthermia ; 41(1): 2335201, 2024.
Article in English | MEDLINE | ID: mdl-38583875

ABSTRACT

PURPOSE: Radiotherapy (RT) is the primary treatment for prostate cancer (PCa); however, the emergence of castration-resistant prostate cancer (CRPC) often leads to treatment failure and cancer-related deaths. In this study, we aimed to explore the use of microwave hyperthermia (MW-HT) to sensitize PCa to RT and investigate the underlying molecular mechanisms. METHODS: We developed a dedicated MW-HT heating setup, created an in vitro and in vivo MW-HT + RT treatment model for CRPC. We evaluated PC3 cell proliferation using CCK-8, colony experiments, DAPI staining, comet assay and ROS detection method. We also monitored nude mouse models of PCa during treatment, measured tumor weight, and calculated the tumor inhibition rate. Western blotting was used to detect DNA damage repair protein expression in PC3 cells and transplanted tumors. RESULTS: Compared to control, PC3 cell survival and clone formation rates decreased in RT + MW-HT group, demonstrating significant increase in apoptosis, ROS levels, and DNA damage. Lower tumor volumes and weights were observed in treatment groups. Ki-67 expression level was reduced in all treatment groups, with significant decrease in RT + MW-HT groups. The most significant apoptosis induction was confirmed in RT + MW-HT group by TUNEL staining. Protein expression levels of DNA-PKcs, ATM, ATR, and P53/P21 signaling pathways significantly decreased in RT + MW-HT groups. CONCLUSION: MW-HT + RT treatment significantly inhibited DNA damage repair by downregulating DNA-PKcs, ATM, ATR, and P53/P21 signaling pathways, leading to increased ROS levels, aggravate DNA damage, apoptosis, and necrosis in PC3 cells, a well-established model of CRPC.


Subject(s)
Adenocarcinoma , Hyperthermia, Induced , Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Humans , Male , Animals , Mice , Prostatic Neoplasms, Castration-Resistant/radiotherapy , Prostatic Neoplasms, Castration-Resistant/metabolism , PC-3 Cells , Reactive Oxygen Species/metabolism , Microwaves , Tumor Suppressor Protein p53/metabolism , Hyperthermia, Induced/methods , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/metabolism , DNA Repair , Apoptosis , Oxidative Stress , Hyperthermia , Adenocarcinoma/radiotherapy , DNA/metabolism , Cell Line, Tumor , Cell Proliferation
12.
J Cancer Res Clin Oncol ; 150(4): 181, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587664

ABSTRACT

PURPOSE: To explore the prognostic and therapeutic role of Epstein-Barr Virus (EBV) on peripheral T-cell lymphoma (PTCL). METHODS: Totally 262 newly diagnosed PTCL patients who were hospitalized from January 2014 to December 2022 were retrospectively enrolled. Molecular analysis included 31 eligible patients. EBV-encoded RNA (EBER) presence in tumor tissue and EBV DNA levels in patients at baseline (DNA1) and after 4 cycles of chemotherapy (DNA4) were assessed. RESULTS: Our findings revealed that the EBER-positive cohort exhibited significant differences compared to counterparts in overall survival (OS, P = 0.047) and progression-free survival (PFS, P = 0.009). Both DNA1 and DNA4 were significantly associated with inferior OS. Multivariate analysis demonstrated that DNA4 independently affected PTCL prognosis for OS (hazard ratio = 5.1617; 95% confidence interval 1.1017-24.1831; P = 0.037). Treatment with the cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) plus azacytidine regimen showed a better OS compared to CHOP or CHOP plus etoposide for patients with partially positive EBER and EBER positive statuses (P = 0.192), although the improvement was not statistically significant. This study delineated the genetic paradigm of PTCL, comparing genetic differences by EBV status and found that EBER partially positive plus positive patients were more likely to have DNMT3A (P = 0.002), RHOAG17V (P = 0.023), and TET2 mutations (P = 0.032). CONCLUSION: EBER, DNA1, and DNA4 emerged as sensitive markers for prognosis. CHOP plus azacytidine might present a preferable option for PTCL patients with DNA methylation due to EBV infection.


Subject(s)
Epstein-Barr Virus Infections , Lymphoma, T-Cell, Peripheral , Humans , Herpesvirus 4, Human/genetics , RNA , Epstein-Barr Virus Infections/complications , Lymphoma, T-Cell, Peripheral/drug therapy , Lymphoma, T-Cell, Peripheral/genetics , Retrospective Studies , Azacitidine , DNA
13.
Nat Commun ; 15(1): 3015, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589344

ABSTRACT

Many experimental and computational efforts have sought to understand DNA origami folding, but the time and length scales of this process pose significant challenges. Here, we present a mesoscopic model that uses a switchable force field to capture the behavior of single- and double-stranded DNA motifs and transitions between them, allowing us to simulate the folding of DNA origami up to several kilobases in size. Brownian dynamics simulations of small structures reveal a hierarchical folding process involving zipping into a partially folded precursor followed by crystallization into the final structure. We elucidate the effects of various design choices on folding order and kinetics. Larger structures are found to exhibit heterogeneous staple incorporation kinetics and frequent trapping in metastable states, as opposed to more accessible structures which exhibit first-order kinetics and virtually defect-free folding. This model opens an avenue to better understand and design DNA nanostructures for improved yield and folding performance.


Subject(s)
Nanostructures , Nanotechnology , Nucleic Acid Conformation , DNA/chemistry , Nanostructures/chemistry , Kinetics
14.
Nat Commun ; 15(1): 3040, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589445

ABSTRACT

RfaH, a paralog of the universally conserved NusG, binds to RNA polymerases (RNAP) and ribosomes to activate expression of virulence genes. In free, autoinhibited RfaH, an α-helical KOW domain sequesters the RNAP-binding site. Upon recruitment to RNAP paused at an ops site, KOW is released and refolds into a ß-barrel, which binds the ribosome. Here, we report structures of ops-paused transcription elongation complexes alone and bound to the autoinhibited and activated RfaH, which reveal swiveled, pre-translocated pause states stabilized by an ops hairpin in the non-template DNA. Autoinhibited RfaH binds and twists the ops hairpin, expanding the RNA:DNA hybrid to 11 base pairs and triggering the KOW release. Once activated, RfaH hyper-stabilizes the pause, which thus requires anti-backtracking factors for escape. Our results suggest that the entire RfaH cycle is solely determined by the ops and RfaH sequences and provide insights into mechanisms of recruitment and metamorphosis of NusG homologs across all life.


Subject(s)
Escherichia coli Proteins , Transcription Factors , Transcription Factors/metabolism , Transcription, Genetic , Trans-Activators/metabolism , Escherichia coli Proteins/metabolism , Peptide Elongation Factors/metabolism , DNA-Directed RNA Polymerases/metabolism , DNA
15.
Sci Rep ; 14(1): 8158, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38589477

ABSTRACT

Plasmodium falciparum with the histidine rich protein 2 gene (pfhrp2) deleted from its genome can escape diagnosis by HRP2-based rapid diagnostic tests (HRP2-RDTs). The World Health Organization (WHO) recommends switching to a non-HRP2 RDT for P. falciparum clinical case diagnosis when pfhrp2 deletion prevalence causes ≥ 5% of RDTs to return false negative results. Tanzania is a country of heterogenous P. falciparum transmission, with some regions approaching elimination and others at varying levels of control. In concordance with the current recommended WHO pfhrp2 deletion surveillance strategy, 100 health facilities encompassing 10 regions of Tanzania enrolled malaria-suspected patients between February and July 2021. Of 7863 persons of all ages enrolled and providing RDT result and blood sample, 3777 (48.0%) were positive by the national RDT testing for Plasmodium lactate dehydrogenase (pLDH) and/or HRP2. A second RDT testing specifically for the P. falciparum LDH (Pf-pLDH) antigen found 95 persons (2.5% of all RDT positives) were positive, though negative by the national RDT for HRP2, and were selected for pfhrp2 and pfhrp3 (pfhrp2/3) genotyping. Multiplex antigen detection by laboratory bead assay found 135/7847 (1.7%) of all blood samples positive for Plasmodium antigens but very low or no HRP2, and these were selected for genotyping as well. Of the samples selected for genotyping based on RDT or laboratory multiplex result, 158 were P. falciparum DNA positive, and 140 had sufficient DNA to be genotyped for pfhrp2/3. Most of these (125/140) were found to be pfhrp2+/pfhrp3+, with smaller numbers deleted for only pfhrp2 (n = 9) or only pfhrp3 (n = 6). No dual pfhrp2/3 deleted parasites were observed. This survey found that parasites with these gene deletions are rare in Tanzania, and estimated that 0.24% (95% confidence interval: 0.08% to 0.39%) of false-negative HRP2-RDTs for symptomatic persons were due to pfhrp2 deletions in this 2021 Tanzania survey. These data provide evidence for HRP2-based diagnostics as currently accurate for P. falciparum diagnosis in Tanzania.


Subject(s)
Blood Group Antigens , Malaria, Falciparum , Humans , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Gene Deletion , Tanzania/epidemiology , Diagnostic Tests, Routine/methods , Antigens, Protozoan/genetics , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Malaria, Falciparum/genetics , Health Facilities , DNA
16.
Sci Rep ; 14(1): 7519, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38589490

ABSTRACT

Homologous recombination (HR) repairs DNA damage including DNA double-stranded breaks and alterations in HR-related genes results in HR deficiency. Germline alteration of HR-related genes, such as BRCA1 and BRCA2, causes hereditary breast and ovarian cancer (HBOC). Cancer cells with HR deficiency are sensitive to poly (ADP-ribose) polymerase (PARP) inhibitors and DNA-damaging agents. Thus, accurately evaluating HR activity is useful for diagnosing HBOC and predicting the therapeutic effects of anti-cancer agents. Previously, we developed an assay for site-specific HR activity (ASHRA) that can quantitatively evaluate HR activity and detect moderate HR deficiency. HR activity in cells measured by ASHRA correlates with sensitivity to the PARP inhibitor, olaparib. In this study, we applied ASHRA to lymphoblastoid cells and xenograft tumor tissues, which simulate peripheral blood lymphocytes and tumor tissues, respectively, as clinically available samples. We showed that ASHRA could be used to detect HR deficiency in lymphoblastoid cells derived from a BRCA1 pathogenic variant carrier. Furthermore, ASHRA could quantitatively measure the HR activity in xenograft tumor tissues with HR activity that was gradually suppressed by inducible BRCA1 knockdown. The HR activity of xenograft tumor tissues quantitatively correlated with the effect of olaparib. Our data suggest that ASHRA could be a useful assay for diagnosing HBOC and predicting the efficacy of PARP inhibitors.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Ovarian Neoplasms , Piperazines , Humans , Female , Homologous Recombination , BRCA1 Protein/genetics , Phthalazines/pharmacology , Phthalazines/therapeutic use , Antineoplastic Agents/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Poly(ADP-ribose) Polymerases/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , DNA/therapeutic use
17.
Sci Rep ; 14(1): 8159, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38589623

ABSTRACT

Whole-genome sequencing (WGS) is currently making its transition from research tool into routine (clinical) diagnostic practice. The workflow for WGS includes the highly labor-intensive library preparations (LP), one of the most critical steps in the WGS procedure. Here, we describe the automation of the LP on the flowbot ONE robot to minimize the risk of human error and reduce hands-on time (HOT). For this, the robot was equipped, programmed, and optimized to perform the Illumina DNA Prep automatically. Results obtained from 16 LP that were performed both manually and automatically showed comparable library DNA yields (median of 1.5-fold difference), similar assembly quality values, and 100% concordance on the final core genome multilocus sequence typing results. In addition, reproducibility of results was confirmed by re-processing eight of the 16 LPs using the automated workflow. With the automated workflow, the HOT was reduced to 25 min compared to the 125 min needed when performing eight LPs using the manual workflow. The turn-around time was 170 and 200 min for the automated and manual workflow, respectively. In summary, the automated workflow on the flowbot ONE generates consistent results in terms of reliability and reproducibility, while significantly reducing HOT as compared to manual LP.


Subject(s)
Lipopolysaccharides , Robotics , Humans , Reproducibility of Results , High-Throughput Nucleotide Sequencing/methods , Gene Library , Whole Genome Sequencing , DNA , Workflow
18.
Protein Sci ; 33(5): e4981, 2024 May.
Article in English | MEDLINE | ID: mdl-38591662

ABSTRACT

Translesion DNA synthesis pathways are necessary to ensure bacterial replication in the presence of DNA damage. Translesion DNA synthesis carried out by the PolV mutasome is well-studied in Escherichia coli, but ~one third of bacteria use a functionally homologous protein complex, consisting of ImuA, ImuB, and ImuC (also called DnaE2). Numerous in vivo studies have shown that all three proteins are required for translesion DNA synthesis and that ImuC is the error-prone polymerase, but the roles of ImuA and ImuB are unclear. Here we carry out biochemical characterization of ImuA and a truncation of ImuB from Myxococcus xanthus. We find that ImuA is an ATPase, with ATPase activity enhanced in the presence of DNA. The ATPase activity is likely regulated by the C-terminus, as loss of the ImuA C-terminus results in DNA-independent ATP hydrolysis. We also find that ImuA binds a variety of DNA substrates, with DNA binding affinity affected by the addition of ADP or adenylyl-imidodiphosphate. An ImuB truncation also binds DNA, with lower affinity than ImuA. In the absence of DNA, ImuA directly binds ImuB with moderate affinity. Finally, we show that ImuA and ImuB self-interact, but that ImuA is predominantly a monomer, while truncated ImuB is a trimer in vitro. Together, with our findings and the current literature in the field, we suggest a model for translesion DNA synthesis, where a trimeric ImuB would provide sufficient binding sites for DNA, the ß-clamp, ImuC, and ImuA, and where ImuA ATPase activity may regulate assembly and disassembly of the translesion DNA synthesis complex.


Subject(s)
Myxococcus xanthus , Myxococcus xanthus/genetics , Myxococcus xanthus/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Bacterial Proteins/chemistry , 60535 , Escherichia coli/genetics , Escherichia coli/metabolism , DNA/genetics , DNA Replication
19.
Anal Chem ; 96(14): 5625-5632, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38556980

ABSTRACT

The robust point-of-care platform for sensitive, multiplexed, and affordable detection of allergen-specific IgE (sIgE) is an urgent demand in component-resolved diagnostics. Here, we developed a microfluidic immunosensing platform based on a rolling circle amplification-assisted DNA dendrimer probe for sensitive detection of multiple sIgEs. The versatile multichannel microfluidic whole blood analytical device integrates cell filtration, recombinant antigen-modified magnetic enrichment, and DNA dendrimer probe-amplified signal transduction for portable on-chip analysis. Three sIgEs against common oyster allergens were simultaneously detected in blood samples by simple smartphone-based imaging without any pretreatment. The quantitative detection of multiple allergen-specific antibodies on the platform was achieved with limits of detection of less than 50 pg/mL, exhibiting superior sensitivity compared to most point-of-care testing. The detection results of 55 serum samples and 4 whole blood samples were 100% consistent with the ELISA results, confirming the accuracy and stability of our platform. Additionally, the reversible combination of hexahistidine6-tag and Ni-IMAC magbead was elegantly utilized on the immunosensing platform for desired reversibility. With the advantages of general applicability, high sensitivity, and reversibility, the DNA dendrimer-based microfluidic immunosensing platform provides great potential for the portable detection of immune proteins as a point-of-care platform in disease diagnostics and biological analysis.


Subject(s)
Dendrimers , Microfluidics , DNA/metabolism , DNA Probes , Allergens , Immunoglobulin E
20.
Elife ; 122024 Apr 03.
Article in English | MEDLINE | ID: mdl-38567819

ABSTRACT

Based on experimentally determined average inter-origin distances of ~100 kb, DNA replication initiates from ~50,000 origins on human chromosomes in each cell cycle. The origins are believed to be specified by binding of factors like the origin recognition complex (ORC) or CTCF or other features like G-quadruplexes. We have performed an integrative analysis of 113 genome-wide human origin profiles (from five different techniques) and five ORC-binding profiles to critically evaluate whether the most reproducible origins are specified by these features. Out of ~7.5 million union origins identified by all datasets, only 0.27% (20,250 shared origins) were reproducibly obtained in at least 20 independent SNS-seq datasets and contained in initiation zones identified by each of three other techniques, suggesting extensive variability in origin usage and identification. Also, 21% of the shared origins overlap with transcriptional promoters, posing a conundrum. Although the shared origins overlap more than union origins with constitutive CTCF-binding sites, G-quadruplex sites, and activating histone marks, these overlaps are comparable or less than that of known transcription start sites, so that these features could be enriched in origins because of the overlap of origins with epigenetically open, promoter-like sequences. Only 6.4% of the 20,250 shared origins were within 1 kb from any of the ~13,000 reproducible ORC-binding sites in human cancer cells, and only 4.5% were within 1 kb of the ~11,000 union MCM2-7-binding sites in contrast to the nearly 100% overlap in the two comparisons in the yeast, Saccharomyces cerevisiae. Thus, in human cancer cell lines, replication origins appear to be specified by highly variable stochastic events dependent on the high epigenetic accessibility around promoters, without extensive overlap between the most reproducible origins and currently known ORC- or MCM-binding sites.


Subject(s)
Origin Recognition Complex , Saccharomyces cerevisiae Proteins , Humans , Origin Recognition Complex/genetics , Origin Recognition Complex/metabolism , Replication Origin/genetics , Binding Sites , DNA Replication/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Chromosomes, Human/metabolism , DNA/metabolism , Cell Cycle Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...